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Abstract 

Network size plays an important role in the generalization performance of a network. A number of approaches which try 
to determine an "appropriate" network size for a given problem have been developed during the last few years. Although 
it is usually demonstrated that such approaches are capable of finding small size networks that solve the problem at 
hand, it is quite remarkable that the generalization capabilities of these networks have not been thoroughly explored. In 
this paper, we have considered the weight elimination technique and we propose a scheme where it is  coupled with ge- 
netic algorithms. Our objective is not only to find smaller size networks that solve the problem at hand, by pruning larg- 
er size networks, but also to improve generalization. The innovation of our work relies 011 a fitness function which uses 
an adaptive parameter to encourage the reproduction of networks having good generalization performance and a rela- 
tively small size. 

1. Introduction 
A lot of emphasis has been given in the last few years in the development of techniques which try to improve gen- 

eralization by modifying the network structure during training. However, in most cases, tlhe feasibility of an approach is 
illustrated showing results on network size reduction and convergence speed, while less or no emphasis has been given 
to the generalization issue [ 11-[SI. In fact, in some studies where generalization was addressed, improvements were 
observed using artificial data sets only [6]-181, while no significant improvement, or even worse, generalization has been 
reported in some other studies where real data sets were used [9]-[ 121. Our interest in this paper is to improve the per- 
formance of weight pruning techniques. Weight pruning techniques are very sensitive to the selection of certain parame- 
ter values which determine when pruning should start and when it should stop. If pruning starts too early, the network 
might not be able to learn the desired mapping. On the other hand, if pruning stops early, it might not be possible to suf- 
ficiently prune the network. Also, if pruning does not stop at the right point, it might be possible to overprune and this 
will deteriorate generalization. Determining appropriate pruning parameter values to control the beginning and the end 
of the pruning process is usually done by trial and error. 

In this paper, we propose the coupling of genetic algorithms [13] and weight pruning. In particular, the weight 
elimination technique [14],[15] a representative weight pruning technique and the imost general of weight decay 
approaches has been chosen to be coupled with the genetic algorithm. However, the framework of the approach we pro- 
pose is more general and other pruning techniques can also be coupled with genetic algorithms. The goal of the pro- 
posed approach is to prune oversized networks with the objective that the obtained pruned networks will always have a 
small size and a better generalization performance than that of their unpruned counterparts. Our primary interest is not 
only to determine an appropriate network size by pruning oversized networks but also 1.0 demonstrate that the pruned 
networks improve generalization. 

Choosing a "good" fitness function is probably the most critical issue in genetic algorithm design since it provides 
the mechanism for evaluating the members (encoded solutions) of a population. The innovation of the proposed 
approach relies on the use of a fitness function which takes into consideration both network size and generalization. In 
particular, during the generation of new genetic populations, an adaptive parameter weights the importance of network 
size versus generalization, encouraging the reproduction of networks having good generalization and a relatively small 
size. The motivation for using genetic algorithms is that as new populations are formed., the network structure of each 
member in a population changes in a different way since each network is associated with different parameter values. 
Since the characteristics among different members in the population can be exchanged by applying the genetic opera- 
tors, new, more powerful members may be discovered as evolution proceeds. 
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The organization of the paper is as follows: Section 2 reviews the weight elimination technique and illustrates its 
sensitivity to the selection of certain parameter values which affect network size and generalization. Section 3 discusses 
the genetic algorithm approach. The databases used, the experiments performed, and the results obtained are presented 
in Section 4. Finally, our conclusions are given in Section 5. 

2. Reducing network size using weight elimination 
Weight elimination is a general weight decay approach proposed by Weigend et. al. [14],[15]. It minimizes a 

modified error function which is formed by adding a penalty term to the original error function of the back-propagation 
algorithm. Specifically, the modified error hnction has the form: 

There are several issues to be addressed during the implementation of the weight elimination technique. The first 
and probably most important issue is deciding when pruning should start affecting training. This issue is straightforward 
related to the choice of the weight factor ,IwE. In general, this parameter is chosen by trial and error. However, experi- 
ence has shown that better results can be achieved if this parameter can be determined adaptively during training. 
Weigend et. al. [14] have proposed a procedure for this. Initially, AWE is set to zero. Then, it increases, decreases, or 
stays the same according to a methodology based on a number of parameters such as the error of the network, the aver- 
age error, and a desired error provided externally by the user. The amount by which ,IWE must be increased or decreased 
is another parameter specified by the user. We have found that this procedure is not very robust. Here, we have chosen 
an alternative way for determining dWE,  motivated by [6]. Specifically, dwE is determined as follows: 

where do and pWE are constants to be defined. E,, is an estimation of the generalization error of the network. 
When E,, is large, AWE will be small and the second term in Eq. (1) will contribute almost nothing to the total error. 
When E,, starts decreasing, the second term will start being more significant driving small weights to zero. A common 
way of estimating the generalization performance of a network during training, is by using cross-validation [16]. If G,, 
represents the ratio of the correctly classified patterns from the validation set over the total number of patterns in the val- 
idation set, then we define E,, as E,, = 1 - Gvd. Updating Gvd and ,IWE takes place in every epoch. 

Another important issue to be addressed is when training, and consequently pruning, should stop. It has been 
reported that the exact stopping point is not very important [ 151. However, our experimental results shows that this is not 
consistently true since it might result in overpruning the network, which can deteriorate generalization significantly. It is 
also important to decide when is appropriate to remove connections associated with small weight values. In our imple- 
mentation, connections are removed at the end of the training process. A weight wii is removed only if Iwyl < IwoI. 

- 

2.1. Sensitivity of weight elimination. 
In this section, we consider the sensitivity of weight elimination on the selection of various parameter values. 

Four different databases have been used in the experiments reported in this subsection: the Numbers, the Ionosphere, the 
Wine, and the Breast-cancer databases. Details about each of the databases are given in section 4. First, we examined 
the sensitivity of weight elimination on the selection of the pWE parameter. Thus, we fixed wo (w0=0.25) and the initial 
weights and we performed 20 different experiments using different pWE values each time (from pWE=lO to /3,=100 in 
increments of 5). From the results it was obvious that different bWE’s are more appropriate for different databases, mak- 
ing the choice of appropriate pWE values problem dependent. For the Numbers database, the best &E’S seems to be in 
the range of [20-301, for the Ionosphere database in the range of [15-50], for the Wine database in the range of [25-35] 
and for the Breast-cancer database in the range of [30-1001. Next, we tested the dependence of weight elimination on 
the selection of the wo parameter. For this reason, we fixed PWE (pWE=30) and the initial weights and we performed 20 
different experiments using different w0 values each time (from wo=O.l to wo=1.0 in increments of 0.05). The results 
demonstrated that the choice of WO’s value is not quite problem dependent and that choosing W O  close to 1.0 gives good 
results both in terms of network size and generalization. In the last set of the experiments, we tested the sensitivity of 
weight elimination on the selection of different initial weights. This time, we fixed BwE and wo (pwE=30 and w0=o.25) 
and we performed 20 different experiments using different random initial weights each time (randomly chosen in the 
range of [-0.1 - 0.11). The results showed that the choice of the initial weights is very critical since both generalization 
and network size are affected in an unpredictable way. 
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3. The genetic algorithm approach 
As we show in the previous section, weight elimination is quite sensitive to the selection of certain parameters and 

substantial differences in terms of generalization and network size can be observed by changing these parameter values. 
Finding good parameter values requires an extensive experimentation. Here, we propose not to perform each experi- 
ment independently, but to form a population of networks having the same parameter settings with these chosen for the 
individual experiments and apply genetic algorithms. Initially, we start with two-layer networks (i.e., one hidden and 
one output layer), having enough nodes in the hidden layer to ensure convergence. After the network has been chosen, 
we encode it into a structure that can be handled by the genetic algorithm and we create P copies of it, where P repre- 
sents the population size. Each of these copies is assigned a different set of parameter vallues. The parameters were cho- 
sen to be the initial weights and pWE. This choice was based on the experimental results presented in section 2.1 which 
indicated that these parameters affect generalization and network size the most. New populations are generated by 
applying the genetic operators of reproduction, crossover and mutation. 

The fitness of each member is measured by first decoding it into a network. Then, we train it for a number of 
epochs using weight elimination in order to record the network’s performance in terms of generalization and size. The 
evaluation function consists of TWO terms: the first term returns an evaluation with resplect to the generalization perfor- 
mance of the network while the second term returns an evaluation with respect to it’s size. A factor .AwE weights the 
importance of generalization versus network size. Each network in the population is associated with it’s own AWE 
parameter. After the first few generations, members in the same population will have totally different characteristics. 
This variety in network sizes and generalization performances will allow the genetic algorithm to search and probably 
discover better solutions. Next, we describe the network representation scheme, the genetic operators, and the fitness 
evaluation function used. 

3.1. Network representation scheme 
Since our approach considers a large predefined, two-layer network with the objjective to reduce the number of 

connections, we do not really need to encode the number of layers and the number of nodes per layer. The quantity 
which is important to encode is the number of connections between successive layers. Here, we have adopted the 
approach proposed by Montana and Davis [17]. According to this approach, the weights and biases of a network are 
encoded in a straightforward way as a string of real numbers. Decoding is also straightforward. 

3.2. Genetic operators 

The genetic operators used in this work are the most commonly used operators: the reproduction, the crossover, 
and the mutation operators. The purpose of the reproduction operator is to create a new population based on the evalua- 
tion (fitness) of the members of the old population. Our implementation uses the roulette wheel selection scheme 
described in [13]. Fitness scaling has also been implemented [13]. In addition to fitness scaling, two more heuristics 
have been incorporated in our implementation: the generation gap and the elitism strategy [ 181. 

Crossover is applied after reproduction. Here, we are using a modified crossover operator which we call the 
crossover-nodes operator. The idea is to swap groups of weights feeding into the same node. The reason is quite plausi- 
ble; each node in the network contributes to the solution that the network tries to find. Thus, weights feeding into a 
node serve a role in finding a solution for the problem at hand. Swapping weights arbitrarily may not make a lot of sense 
while swapping groups of weights feeding into nodes is more sensible. This operator has also been used in [17]. We 
have also considered a modified crossover-nodes operator. Swapping weights feeding nodes located at hidden layers 
higher than the first, may be disruptive since the internal knowledge representations between two different networks are 
probably quite different. However, swapping weights feeding nodes located at the first hidden layer only, may be less 
disruptive for the networks, since it can be considered as an exchange of feature detectors. We call this operator as the 
crossoverfirst-layer_nodes operator. 

The last genetic operator used is the mutation operator. This operator picks randomly a member from the popula- 
tion and changes it slightly. In its simplest form, mutation changes the value of a weight by adding a small random 
value. Following our discussion regarding the crossover-nodes operator, the mutation operator used in this study does 
not change single weights but groups of weights feeding into a node. This modified operator which we call the 
mutate-nodes operator, has also been used in other studies [ 171. 
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3.3. Fitness evaluation 

The choice of a fitness function is problem dependent and is probably the most critical issue in genetic algorithm 
design, When genetic algorithms are combined with neural networks, the most commonly used approach to evaluate the 
performance of a member in the population is to train the network represented by this member and record its mean 
squared error. This is quite inappropriate for our purpose, since it does not account for the network’s generalization per- 
formance and size. To perform an evaluation based on network size and generalization, we have considered a fitness 
function having the following form: 

E f i  = Gner-vnr -I- k ~ ( 1  - Ener-size) (3) 

The first term (Gner-val) accounts for generalization, while the second term (1 - E ,  sire) accounts for the network 
size. The parameter A ,  is a weighing factor which controls the importance of the two terms. If AGA is very small, the 
fitness of a member is mostly determined by its generalization performance only. However, when ,IGA assumes large 
values, both generalization, and size influence the fitness of a member. The value of the weighing factor 11, is deter- 
mined adaptively, in a similar manner that dwE is determined in weight elimination. Specifically, dGA is determined as 
follows: 

AGA = jlO-GAe-flGAE.a, (4) 

where jlo denotes the generalization error of the network. 
The goal of the genetic algorithm is to find solutions which maximize the above fitness function. It is clear from the def- 
inition of the fitness function that reproduction favors members with good generalization performance and a relatively 
small network size. In early generations, network size does not play an important role in reproduction and the fittest 
members are the members which generalize best. However, in future generations both network size and generalization 
affect reproduction. For an estimation of Ener-genr cross-validation is used again. Recalling our discussion in section 2, 
.EnerJen is defined to be 1 - G, vd where Gner-val is the generalization performance of a network over the validation 
set. The network size E ,  isdefined to be the number of effective connections of the network (connections whose 
associated absolute weight d u e s  are greater than Iwol) over the total number of connections. Both Enet-gen and 
take values between 0 and 1. 

and PGA are constants specified by the user and 

TABLE 1. Data sets used and network architectures chosen. 

I Data and Network Architectures I 
Data set 
Numbers 150 50 

I Training set I Validationset I Test set 1 Classes I Architecture 
63-40-1 0 

4. Simulations and results 
In order to evaluate our approach, an Pxtensive experimental study has been performed using one artificial and 

seven real databases. The real databases were selected from the collection of the databases distributed by the machine 
learning group at the University of California at Irvine [19]. For each problem, data was first normalized in [0,1] if that 
was necessary. Then data was divided into a training, a validation, and a test set. Details are provided in Table 1. Four 
approaches have been compared: the original back-propagation (BP), the back-propagation with weight elimination 
(BP-WE), the genetic algorithm approach using the crossover-nodes and mutate-nodes operators (GA-BP-WE), and 
the genetic algorithm approach using the crossoverfirst-layer-nodes and mutate-nodes operators (GA1-BP-WE). 

For each problem considered, a two-layer network was chosen (see Table 1). The size of the networks chosen for 
each problem was considered to be big enough since we were able to successfully train smaller size networks for the 
same problems, without any particular difficulty. In the case of the BP and BP-WE techniques, experimental results 
were obtained by running 20 experiments with each method, for each database. For each experiment, a different set of 
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initial weights was used. For comparison purposes, both the BP and BP-WE techniques used the same 20 initial weight 
configurations, for each database. In the case of the BP-WE technique, we had also to choose values for the parameters 
pwE and wo (see Eq. (2)). The parameter wo was set to 1.0 as was mentioned in section 2. We have chosen a different 
pm value (in the range of [ lo  - 1001) for each of the 20 experiments performed per database. To challenge the genetic 
algorithm approach (which uses the same values have been used 
for all the databases. 

The population size P of the genetic algorithm approach was set equal to 20, that is, equal to the number of indi- 
vidual experiments performed for each database. The initial population was formed by first encoding the initial network 
and then copying it P times. The parameter values of each network ( f i w E ,  WO, and initial weights) were chosen exactly 
the same with those used in the individual experiments using the BP and BP-WE approaches. In other words, the set- 
ting of the initial population was exactly the same with the initial setting of the networks used in the 20 individual 
experiments performed for each database using the BP and BP-WE approaches. The objective was to demonstrate that 
the genetic algorithm approach utilizes exactly the same amount of information which was available to the networks 
trained with the BP and BP-WE approaches, however, it is  capable of discovering better solutions, taking advantage of 
the interchange of information which takes place during evolution. 

The evaluation of each network from the population was performed by first training, each network for a number of 
epochs using the weight elimination technique. The number of epochs used to train each network was about 10% [20] of 
the average number of epochs required by the BP approach to converge for the same problem (average over 20 different 
experiments performed for each database using the BP approach). After a network in the population has been trained 
for a number of epochs, we compute its classification performance (Gna - classification performance over the valida- 
tion set) and its size (.EEner-size - effective number of connections over theiotal number of connections). Connections with 
small weights are not removed before the genetic algorithm has converged. This was also the case with the BP-WE 
approach. 

The convergence of the genetic algorithm was determined by considering the improvement I, at each generation. 
The improvement I, at the n-th generation is defined as the average fitness at the n-th generation over the average fit- 
ness at the (n - 1)-th generation. To avoid early convergence, we have used the following criterion based on the average 
improvement A, defined as follows: 

values as we will explain later), the same 20 

A, is the average improvement at step n and y is a constant usually chosen very close to 1.0. Here, y was set 
equal to 0.9. A0 can be computed by evaluating each member of the initial population before evolution begins. New 
populations are allowed to form as far as the average improvement keeps increasing, that is, while A, ;F A,-1. 

TABLE 2. Comparison of the best solutions obtained 

Generalization and network size of best solutions 7 

In all the simulations performed, the learning rate and momentum were both set equal to 0.1. The generation gap 
was set equal to 0.9 while the parameter which determines the number of best fit copies in future populations (called 
Cmult in [13]) was set equal to 1.5. The crossover and mutation probabilities were chosen 0.6 and 0.001 correspond- 
ingly. ,lo were both set to 1 (Eq. (2) and (4) correspondingly). Different /?cA values (Eq. (4)) were used 
during o;r experimentation. The best solutions obtained correspond to values in the range of [ 1.0 - 10.01. For / ~ G A  

values much greater than 10.0, we did not observe a great reduction in terms of network size. 

and /lo 
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A detailed description of the experimental results for each one of the databases can be found in [21]. Here, we 
present only a summary of the results we obtained (Table 2). The first column presents the database used while the next 
columns present the best network solutions found for each of the four methods we considered in our experiments. For 
each method we report the best generalization performance achieved and the reduction in network size associated with 
this solution. It is obvious that the pruned networks obtained by the combination of genetic algorithms and weight elimi- 
nation have much better generalization capabilities. In terms of network size, the results are also much better in many 
cases (for example, in the case of the Soybean database). The use of the crussoverf i rs t - layer-~~~e~ operator seems to 
be very beneficial in some cases. 

5. Conclusions 
An extensive experimental study involving one artificial and seven real databases has demonstrated that the cou- 

pling of genetic algorithms with weight elimination is a very promising approach. Actually, the framework of our 
approach is more general since other pruning techniques can be also coupled with genetic algorithms. Weight elimina- 
tion depends on a number of parameter values whose choice can significantly affect the results. In fact, we show that 
small size networks can be obtained, however, the generalization performance of these networks is not always satisfac- 
tory. On the other hand, the networks obtained by the proposed approach not only are  small in size but they also have 
better generalization capabilities. 
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